Lukas Voss 15.07.2021

Outline

I. The Nitrogen Vacancy & motivation

II. The model

III. Summary

IV. Outlook & next steps

·05

Kas V

The NV center & motivation

longest coherence time at room temperature¹

 $(2,43 \pm 0,06)$ ms

single photon source

potential for quantum information

potential for quantum sensing

¹ Herbschleb et al. Ultra-long coherence times amongst room-temperature solid-state spins In: Nature Communications (2019)

Motivation

1 Romana Schirhagl et al. "Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology". In: Annual review of physical chemistry 65 (2014), pp. 83–105

Energy level structure

• excited-state triplet ³E

$$m_{s} = +1$$

$$m_{s} = +1$$

$$m_{s} = 0$$

$$m_{s} = 0$$

• ground-state triplet ³A

The models vos

The model

• One central NV spin

• Nuclear background spins of ^{13}C atoms in spherical shell

$$I_j = \frac{1}{2}$$

- Pairwise interaction between S and I_i

The Hamiltonian

$H = H_{\rm NV} + H_{\rm BS} + H_{\rm I}$ • With the presence of a magnetic field $B = B_{z, \mu} R^{2}$

$$H_{\rm NV} = D S_z^2 + \gamma_e B_z S_z$$

D: fine structure splitting

$H_{\rm BS} = -\gamma_n B_z I_z$

$\gamma_{e,n}$: gyromagnetic ratios

The Interaction Hamiltonian

- N: number of background spins
- T: dipolar tensor

• \widehat{S} : vector of spin-1 matrices

•
$$\hat{I}$$
: vector of spin- $\frac{1}{2}$ matrices

Pairwise interaction

Magnetic dipole-dipole interaction¹

$$T_{KL}^{(\alpha)} = \begin{cases} \gamma_e \gamma_n \hbar^2 \left(\frac{3 (R_f)}{\Gamma} \right) \\ \gamma_e \gamma_n \hbar^2 \left(\frac{3 R_K^{(\alpha)}}{\Gamma} \right) \\ \gamma_e \gamma_n \hbar^2 \left(\frac{3 R_K^{(\alpha)}}{\Gamma} \right) \end{cases}$$

• \overrightarrow{R} : connects the NV spin with nuclear spin α

1 Alexander P Nizovtsev et al. "Non-flipping 13C spins near an NV center in diamond: hyperfine and spatial characteristics by density functional theory simulation of the C510 [NV] H252 cluster". In: New Journal of Physics 20.2 (2018)

• weak coupling regime due to $T_{KL}^{(\alpha)} \propto (R^{(\alpha)})^{-3}$

Monte Carlo simulation

$$d\psi = \frac{1}{2} \Gamma \psi(t) dt + \left(\sqrt{i} \frac{\|\psi(t)\|}{\|A\psi(t)\|} A - \mathcal{P}\right)$$
$$d\chi = \frac{1}{2} \Gamma \chi(t) dt + \left(\sqrt{i} \frac{\|\chi(t)\|}{\|B\chi(t)\|} B - I\right) \chi$$

1 Heinz-Peter Breuer. "Exact quantum jump approach to open systems in bosonic and spin baths". In: Physical Review A 69.2 (2004)

Monte Carlo simulation

The density matrix as the expectation value \bullet

dN is a differential of a Poisson increment for $dt \rightarrow 0$

Waiting time τ between jumps is exponentially distributed

Idea: Propagate states not the density matrix

product state $\Phi = \psi \otimes \chi$ value $\psi \otimes \varphi$ $\varrho = \mathbb{E}[|\Phi\rangle\langle\Phi|]$

$$-\|\langle\Phi
angle\|$$

 $-\mathrm{tr}(\langle
ho
angle)$

10³

 10^2 number of samples

Jumps for dipole interaction

- Operators A and B for a given spin component j

$$A_j \in \{S_x, S_y, S_z\}$$

Modified stochastic differential equations

$$d\psi = \frac{1}{2} \sum_{\alpha=1}^{N} \Gamma_{\alpha} \psi(t) dt + (0)$$

$$d\chi_{\alpha} = \frac{1}{2} \Gamma_{\alpha} \chi_{\alpha}(t) dt + (0)$$

- Jump probability for spin lpha with spin component j

Mean Field Pivot

$$\delta A_{j} = A_{j} - \frac{\langle \psi | A_{j} | \psi \rangle}{\langle \psi | \psi \rangle}$$

Adding

$$\delta A_{j} = A_{j} - \frac{\langle \psi | A_{j} | \psi \rangle}{\langle \psi | \psi \rangle} \qquad \qquad \delta B_{j,\alpha} = B_{j,\alpha} - \frac{\langle \chi_{\alpha} | B_{j,\alpha} | \chi_{\alpha} \rangle}{\langle \chi_{\alpha} | \chi_{\alpha} \rangle}$$

$$f = \Gamma(\delta A, \delta B)$$
In correction terms
$$d\psi = \frac{1}{2} \sum_{\alpha=1}^{N} \Gamma_{\alpha} \psi(t) dt + i \sum_{j=1}^{3} A_{j} \langle B_{j} \rangle \psi(t) dt + \left(\sqrt{i} \frac{\|\psi(t)\|}{\|\delta A_{j} \psi(t)\|} \delta A_{j} - I\right) \psi(t) dN_{j}$$

$$d\chi_{\alpha} = \frac{1}{2} \Gamma_{\alpha} \chi(t) dt + i \sum_{j=1}^{3} \langle A_{j} \rangle B_{j,\alpha} \chi_{\alpha}(t) dt + \left(\sqrt{i} \frac{\|\chi_{\alpha}(t)\|}{\|\delta B_{j,\alpha} \chi_{\alpha}(t)\|} \delta B_{j,\alpha} - I\right) \chi_{\alpha}(t) dN_{j,\alpha}$$

$$\delta A_{j} = A_{j} - \frac{\langle \psi | A_{j} | \psi \rangle}{\langle \psi | \psi \rangle} \qquad \qquad \delta B_{j,\alpha} = B_{j,\alpha} - \frac{\langle \chi_{\alpha} | B_{j,\alpha} | \chi_{\alpha} \rangle}{\langle \chi_{\alpha} | \chi_{\alpha} \rangle}$$

$$\mathbf{r} = \Gamma(\delta A, \delta B)$$
g correction terms
$$d\psi = \frac{1}{2} \sum_{\alpha=1}^{N} \Gamma_{\alpha} \psi(t) dt + \mathbf{i} \sum_{j=1}^{3} A_{j} \langle B_{j} \rangle \psi(t) dt + \left(\sqrt{\mathbf{i}} \frac{||\psi(t)||}{||\delta A_{j} \psi(t)||} \delta A_{j} - I\right) \psi(t) dN_{j}$$

$$d\chi_{\alpha} = \frac{1}{2} \Gamma_{\alpha} \chi(t) dt + \mathbf{i} \sum_{j=1}^{3} \langle A_{j} \rangle B_{j,\alpha} \chi_{\alpha}(t) dt + \left(\sqrt{\mathbf{i}} \frac{||\chi_{\alpha}(t)||}{||\delta B_{j,\alpha} \chi_{\alpha}(t)||} \delta B_{j,\alpha} - I\right) \chi_{\alpha}(t) dN_{j,\alpha}$$

All probabilities for a jump are stored in a vector with 3N + 1 entries

The jump process algorithm

- an index is drawn based on the probability distribution the vector forms determine the background spin lpha and its spin component j
- NV state ψ and the state of background spin χ_{α} perform an instantaneous jump
- all other background spins propagate unitary and with their respective drift

Evaluation of the model

Evaluation of the model

Expectation value of the interaction Hamiltonian \langle H_I \rangle

Summary

- Effect of Mean Field is not that strong for small spins Slacksquare
- Product state Φ remains valid for each sample

- Number of jumps decreases for higher spins S
- Further investigation needed for more reality-based settings

Outlook and next steps

- Clustered nuclear background spins \bullet
- Introduce a pairwise dipolar interaction between spins within a cluster

 Pairwise interaction between clusters

Outlook and next steps

Use a Kronecker Singular Value Decomposition (KP-SVD) for the interaction matrix \bullet

Investigate how many singular values are necessary for a more efficient simulation

Get in touch with Prof. Jelezko's group to get detailed information about experimental parameters to run a simulation linked to real world properties

oendix

with MF

0 О 20 Spin S